

IV. INTERNATIONAL EGE COMPOSITE MATERIALS SYMPOSIUM

PROCEEDINGS BOOK

IV. INTERNATIONAL EGE COMPOSITE MATERIALS SYMPOSIUM

KOMPEGE 2018

PROCEEDINGS BOOK

6-8 September 2018 iZMiR

IV. INTERNATIONAL EGE COMPOSITE MATERIALS SYMPOSIUM

KOMPEGE 2018

PROCEEDINGS BOOK

Publication of the proceedings issued in this book is possible provided that written approval of the author and editor are taken.

Copyright @ 2018, Ege Üniversitesi İzmir, Turkey www.kompege.ege.edu.tr

Editor Rasim İPEK

ISBN 978-605-338-254-6

PREFACE

It is our pleasure to welcome you to KOMPEGE 2018 (IV. International Ege Composite Materials Symposium) organized by Ege University Faculty of Engineering that took place on September 06-08, 2018 Izmir, Turkey.

The first KompEGE I (17-19 November 2011) and second KompEGE II (7-9 November 2013) and KompEGE III (5-7 November 2015) were held in Kusadasi organized by Ege University Faculty of Engineering.

The symposium provided a platform to bring together academicians, researchers, industrialists, practitioners and other related experts from home and abroad to share knowledge and experiences, which promoted intellectual and practical development in the all field of Technology, Engineering and Science.

KOMPEGE 2018 at the Bioengineering Department of Engineering Faculty at Ege University took place for three days, with more than 550 scientists including countries Japan, Germany, Greece, Iran, Poland, India and Turkey. They discussed current technology and science of composite materials and production.

In KOMPEGE 2018, 132 posters were presented while 173 oral presentations were discussed. In addition, 6 very special subject talks were done by invited speakers. Beside of this, 10 panellists discussed the current composite technology and related problems in two different panels.

Finally, on behalf of the KOMPEGE 2018 Organizing Committee, we would like to express our appreciation to all the participants for taking time out of your busy duties to attend the Symposium.

We would like to thank all academicians, researchers, industrialists, practitioners and other related experts. We would also like to thank our sponsors BMC Automotive Industry and Trade Inc. and IMS Polymers.

Organizing Committee

COMMITTEES

Honorary President	
Necdet BUDAK	
Head of Organizing Committee	
Rasim İPEK	Ege University
Secretary of Organizing Committee	
Ayşe NALBANTSOY	Ege University
Organizing Committee	
	Ege University
	Ege University
_	Ege University
	Ege University
	Ege University
_	Ege University
	Ege University
	Ege University
· · · · · ·	Ege University
	Ege University
	Ege University
	Ege University
•	Ege University Ege University
şule ATTAŞ	Ege University
Advisory Board	
Bülent SANTIRCIOĞLU	BMC Automotive Industry and Trade Inc.
Canan KANDİLLİ	Green Economy Research and Application Centre
Erol DİVANYAN	Alkor Group
Fatih Kemal ÖZTÜRK	
Fatma YURT LAMBRECHT	Ege University
Günnur KOÇAR	Ege University
	TUBITAK
	Ege University Science and Technology Centre
	Izmir Institute of Technology
	Ege University
•	Ege University
Şebnem TAVMAN	Ege University

Scientific Committee

Adil DENİZLİ	Hacettepe University	Turkev
	Erciyes University	
<u>.</u>	Akzo Nobel Kemipol A.S	•
	İzmir Institute of Technology	
•	Ege University	-
	ComTech GmbH Labor für Kunststoffe	•
	Yıldız Technical University	-
	Ege University	•
	King Fahd University	
	Ege University	
	Atatürk University	-
	Namık Kemal University	
	Ege University	•
	Pamukkale University	
	AERO Wind Energy Corporation	•
	Middle East Technical University	
	Hacettepe University	
	Cumhuriyet University	
	SUPMECA/LISMMA and CNAM	-
	Celal Bayar University	
	Uşak University	•
-	Aristotle University	
	Center for Physical Sciences and Technology	
	Yeditepe University	
	Kumamoto University	•
	Middle East Technical University	
	Ege University	
	Czech Technical University	-
	Ege University	
	İzmir University of Economics	-
	Ege University	•
	Katip Çelebi University	-
-	Ege University	
•	İzmir Institute of Technology	•
	Kumamoto University	
	Wroclaw University of Technology	
	Erciyes University	
	Fırat University	
	İskenderun Technical University	
Mehmet Özgür SEYDİBEYOĞLU	Katip Çelebi University	Turkey
	Ege University	
Mesut YENİGÜL	Ege University	Turkey
	İzmir Institute of Technology	-
	Membrane Industry Development Institute	
	Celal Bayar University	
	Kocaeli University	-
	Wien Technical University	
· ·	·	

Null ALDAN	Ege University	Turkey
Oral Cenk AKTAŞ	Leibniz-Institut für Neue Materialien GmbH	Germany
Osman DUR	BMC Automotive Industry and Trade Inc	Turkey
Ozan KARAMAN	İzmir Kâtip Çelebi University	Turkey
Rukan GENÇ ALTÜRK	Mersin University	Turkey
Sema ERENTÜRK	Istanbul Technical University	Turkey
Senay ŞANLIER	Ege University	Turkey
Serdar KARAOĞLU	Ege University	Turkey
Sertan OZAN	Bozok University	Turkey
Sevil YÜCEL	Yıldız Technical University	Turkey
Sinan GÜVEN	Izmir Biomedicine and Genome Institute	Turkey
Süleyman KOÇAK	Celal Bayar University	Turkey
Şenol SERT	Ege University	Turkey
Uğur MALAYOĞLU	Dokuz Eylül University	Turkey
Utku Kürşat ERCAN	İzmir Kâtip Çelebi University	Turkey
Yannis MİSSİRLİS	University of Patras	Greece
Ying YANG	Keele UniversityU	nited Kingdom
Yoldaş SEKİ	Dokuz Eylül University	Turkey
Zehra AYHAN	Sakarya University	Turkey
Technical Committee		
Bedrive Gülsah ÖZTEP	Gümüşl	ana University
• •		iane university
Cafer MEYDAN		•
		Ege University
Ceren GÜRLEK		Ege University Ege University
Ceren GÜRLEK Çağla YARKENT		Ege University Ege University Ege University
Ceren GÜRLEK Çağla YARKENT Damla AKGÜN		Ege University Ege University Ege University Ege University
Ceren GÜRLEK Çağla YARKENT Damla AKGÜN Fatoş KOÇ		Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK Çağla YARKENT Damla AKGÜN Fatoş KOÇ İshak SALÇUK		Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK Çağla YARKENT Damla AKGÜN Fatoş KOÇ İshak SALÇUK İzel ORAL		Ege University Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK Çağla YARKENT Damla AKGÜN Fatoş KOÇ İshak SALÇUK İzel ORAL Konuralp SİVRİ		Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK Çağla YARKENT Damla AKGÜN Fatoş KOÇ İshak SALÇUK İzel ORAL Konuralp SİVRİ Müjde GARİP		Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK Çağla YARKENT Damla AKGÜN Fatoş KOÇ İshak SALÇUK İzel ORAL Konuralp SİVRİ Müjde GARİP Nail ASLAN		Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK		Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK		Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK		Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK Çağla YARKENT Damla AKGÜN Fatoş KOÇ İshak SALÇUK İzel ORAL Konuralp SİVRİ Müjde GARİP Nail ASLAN Oğulcan TAKAK Özge İYİKANAT Şöhret Melda AYDIN		Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK		Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK		Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University
Ceren GÜRLEK Çağla YARKENT Damla AKGÜN Fatoş KOÇ İshak SALÇUK İzel ORAL Konuralp SİVRİ Müjde GARİP Nail ASLAN Oğulcan TAKAK Özge İYİKANAT Şöhret Melda AYDIN Tuğçe MUTAF Tuğçe TEKİN Tunç ÇOLAKOĞLU		Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University Ege University

CONTENTS

PREFACE	j
COMMITTEES	i
 -	1
ABSTRACTS OF INVITED SPEECHES	
CHARACTERISATION OF HIGH PERFORMANCE COMPOSITES WITH SPECIAL	
REFERENCE TO THE INTERFACE SUBSTRATE/RESIN MATRIX — NANO INTERFACE	
HAS MEGA ROLE IN THE COMPOSITES ARCHITECTURE	2
NANOPARTICLE-WEBBED HYBRID HYDROGELS	
COMPOSITES IN NEW APPROACHES FOR SELECTIVE SEPARATION	
NANO-ENGINEERED COMPOSITE ELECTROSPUN POLYMERIC MEMBRANES FOR	
DESALINATION AND WATER TREATMENT	
NANOCOMPOSITE THIN FILMS AND COATINGS	
BIOLOGICAL INTERACTIONS WITH MATERIAL SURFACES	
BIOLOGICAL INTERACTIONS WITH MATERIAL SURFACES	/
ABSTRACTS OF ORAL PRESENTATIONS	
ADSTRACTS OF ORAL TRESENTATIONS	
ANTIBACTERIAL EFFECT OF CARBON-BASED NANOMATERIALS: AN IN VITRO STUDY	C
APPLICATIONS OF THERMOSET COMPOSITES FOR STRUCTURAL PARTS IN	
AUTOMOTIVE INDUSTRY	1.0
CATALYTIC ACTIVITY OF REDUCED GRAPHENE OXIDE BASED BIMETALLIC	1
NANOCOMPOSITES	1.1
CHITOSAN-CARBON NANOFIBER MODIFIED DISPOSABLE ELECTRODES FOR	1 1
ELECTROCHEMICAL DETECTION OF HEPATITIS B VIRUS	1.7
	1 2
COMPARATIVE FINITE ELEMENT ANALYSIS FOR DRIVE PLATE OF AUTOMOTIVE CLUTCH MADE COMPOSITE MATERIALS AND CONVENTIONAL STEEL	1.2
	13
COMPARISON OF DIFFERENT FINITE ELEMENTS IN VIBRATION ANALYSIS OF CURVED	1.
COMPOSITE PLATES	
CONFINEMENT OF IONIC LIQUIDS WITHIN SILICA NETWORKS TO PRODUCE IONOGELS	13
DESIGN AND ANALYSIS OF INTERPLY HYBRID LAMINATED COMPOSITE FOR	
MAXIMUM NATURAL FREQUENCY AND MINUMUM COST USING RANDOM SEARCH	
ALGORITHM AND FINITE ELEMENT METHOD	16
DETERMINATION OF FIRST NATURAL FREQUENCY OF ANNULAR PLATES USING	
MACHINE LEARNING ALGORITHMS	17
DEVELEOPMENT OF A LEAF SPRINGS FROM CARBON FIBER REINFORCED PLASTIC	
MATERIAL	
DEVELOPMENT OF A B-PILLAR FROM CARBON FIBER REINFORCED PLASTIC	
DEVELOPMENT OF A CARBON FIBER REINFORCED POLYMER FRONT BUMPER BEAM	20
DEVELOPMENT OF CHITOSAN AND POLYCAPROLACTONE BASED TRI-LAYER	
BIOCOMPOSITE FILMS AS ACTIVE FOOD PACKAGING APPLICATIONS	
DEVELOPMENT OF COMPOSITE DRIVE SHAFT FOR AUTOMOTIVE INDUSTRY	22
DYNAMIC COMPRESSIVE BEHAVIOR OF AN E-GLASS/POLYESTER COMPOSITE	
MATERIAL SUBJECTED TO REPEATED LOADS	23
EFFECT OF BALL MILLING TIME ON MICROSTRUCTURAL AND MECHANICAL	
PROPERTIES OF BIODEGRADABLE MG PREPARED BY HP-PM	24
EFFECT OF CURRENT TYPE ON SIC REINFORCED AG MATRIX NANOCOMPOSITE	
COATINGS BY ELECTRODEPOSITION	25
EFFECT OF NUT SHELL REINFORCEMENT ON SOLID PARTICLE EROSION BEHAVIOUR	
OF POLYPROPHELENE (PP) MATRIX COMPOSITES	26
EFFECT OF SYNTHETIC GRAPHITE AS A THERMAL CONDUCTIVE FILLER ON THERMAL	
AND MECHANICAL PROPERTIES OF POLYAMIDE 4.6 BASED COMPOSITE	
MATERIALS	27
EFFECT OF ZEOLITE ADDITION ON THE MECHANICAL AND THERMAL PROPERTIES OF	
BASALT FIBER REINFORCED PPS MATRIX COMPOSITES	28
EFFECTS OF SPECIMEN SIZE ON ALKALI ACTIVATED CEMENTS	29
ENHANCED PHOTOCATALYTIC DEGRADATION OF BISPHENOL-A WITH BORON OXIDE	
BASED COMPOSITE MATERIALS	30

ENHANCED THERMAL AND ELECTRICAL CONDUCTIVITY OF EPOXY COMPOSITES	
FILLED WITH SYNTHETIC GRAPHITE	31
EVALUATION OF THE EFFECT OF POLYMER CONCENTRATION ON THE PROPERTIES OF	
GELATIN/PVA COMPOSITE CRYOGELS	. 32
EXTRACTION AND SEPARATION STUDIES OF RARE EARTH ELEMENTS USING CYANEX	
272 IMPREGNATED AMBERLITE XAD-7 RESIN	. 33
FABRICATION OF BISMUTH OXYCHLORIDE NANOCOMPOSITE WITH ENHANCED	
PHOTOCATALYTIC PERFORMANCE	. 34
FACILE SYNTHESIS OF MANGANESE-DOPED CARBON QUANTUM DOT/POLYANILINE	
(MN-CQDS/PANI) COMPOSITES VIA RAPID-MIXING POLYMERIZATION	. 35
GRAPHENE-AGAU-PANI NANOCOMPOSITE FOR SUPERCAPACITOR APPLICATION	. 36
GREEN SYNTHESIS AND CATALYTIC ACTIVITY OF GRAPHENE-CU-AG	
NANOCOMPOSITE	. 37
INVESTIGATION OF THE COLUMN PERFORMANCE OF CYANEX 272 AND D2EHPA	
IMPREGNATED RESINS FOR THE INDIVIDUAL SEPARATION OF RARE EARTH	
ELEMENTS	. 38
INVESTIGATION ON MECHANICAL, VISCOELASTIC, AND THERMAL PROPERTIES OF	
TERNARY CARBON (CARBON FIBER/GRAPHITE/ MULTIWALLED CARBON	
NANOTUBES) FILLED POLYPROPYLENE COMPOSITES	. 39
INVESTIGATION THE TRIBOLOGICAL AND THERMOMECHANICAL PROPERTIES OF	
WOOD-FLOUR AND BASALT FIBER REINFORCED POLY(LACTIC ACID) MATRIX	
HYBRID COMPOSITES	
KINETIC MODELLING OF HEAVY METAL BIOSORPTION IN A FIXED BED COLUMN	.41
MAGNETIC MODIFICATION OF AMBERLITE XAD-7HP RESIN FOR THE EFFECTIVE	
REMOVAL OF CHROMIUM IONS FROM AQUEOUS SOLUTIONS	. 42
MECHANICAL PROPERTIES OF SYNTHESIZED MULTI-WALLED CARBON	
NANOTUBE/POLYESTER COMPOSITE	. 43
MINERALIZED ELECTROSPUN GELATIN/CHITOSAN NANOFIBROUS COMPOSITES FOR	
BONE TISSUE ENGINEERING APPLICATIONS	. 44
OPTIMIZATION AND CHARACTERIZATION OF FATIGUE BEHAVIOR OF GLASS FIBER	
REINFORCED POLYMER MATRIX COMPOSITES	
OPTIMIZATION OF POLY (NIPAM-CO-ITACONIC ACID) HYDROGELS	. 46
OPTIMUM DESIGN OF CARBON/EPOXY COMPOSITE LAMINATES FOR MAXIMUM	
FATIGUE LIFE	. 47
PHOTOTHERMAL PROPERTIES OF REDUCED GRAPHENE OXIDE-FE3O4-POLYANILINE	
NANOCOMPOSITE	. 48
POLY-L-LYSINE COATED NANOCERIA ON THEIR CELL VIABILITY AGAINST	
CANCEROUS AND HEALTHY CELLS IN VITRO	. 49
POLYMERIC MEMBRANES WITH MONOVALENT SELECTIVE LAYER FOR REVERSE	
ELECTRODIALYSIS	. 50
PREDICTION OF PHOSPHATE REMOVAL EFFICIENCY FOR THE HYDRATED FERRIC	
OXIDE-BASED NANOCOMPOSITE BY USING NON-LINEAR REGRESSION MODEL	. 51
PREPARATION AND ANTIBACTERIAL ACTICITY OF POLYURETHANE / METAL	
ORGANIC FRAMEWORK NANOCOMPOSITE FILMS	. 52
PREPARATION AND CHARACTERIZATION OF AMINE HYBRID SILICA AEROGELS FOR	
CO ₂ CAPTURE	. 53
PREPARATION OF SILICA SUPPORTED TITANIA PARTICLES USING LAYER-BY-LAYER	
ASSEMBLY TECHNIQUE	. 54
PREPATION OF NANOSTRUCTURED BINARY OXIDES AND EVALUATION OF	
CATALYTIC ACTIVITY	. 55
RHODAMINE-B REMOVAL PERFORMANCE OF NANO-TIO ₂ INTEGRATED ALGAL	
BIOCOMPOSITE IN A FIXED-BED COLUMN	. 56
SEISMIC RESPONSE OF COMPOSITE SUBSEA FLOWLINE SUBJECTED TO EXTREME	
LEVEL EARTHQUAKE	. 57
SODIUM ALGINATE AND FUNCTIONALIZED GRAPHENE COMPOSITE HYDROGEL FOR	
ADSORPTION OF NEODYMIUM	. 58
SOLID STATE RECYCLING: MICROSTRUCTURE AND WEAR PROPERTIES OF HOT	
PRESSED AA7075/AL ₂ O ₃ COMPOSITES	. 59

STACKING SEQUENCES DESIGN OF THE CYLINDRICAL COMPOSITE PRESSURE VESSEL	
FOR DIFFERENT CARBON/ EPOXY MATERIALS BY USING STOCHASTIC	
OPTIMIZATION METHODS	60
SYNTHESIS OF BIO-BASED POLYURETHANE FILMS USING VEGETABLE OIL BASED	
HYBRID POLYOLS	
SYNTHESIS OF CELLULOSE BASED ALCOGEL AND AEROGEL FROM PINEAPPLE PEEL	62
TEXTILE FIBER REINFORCED COMPOSITES USED IN PACKING INDUSTRY	63
THE EFFECT OF FE ₂ 0 ₃ SUPPLEMENT ON CHARACTERISTICS OF ZINC OXIDE-CARBON	
NANOTUBE COMPOSITE	64
THE EFFECT OF GRAPHENE NANOPLATELETS ON FAILURE LOAD OF ACRYLIC	
ADHESIVE FOR ALUMINUM POLYPROPYLENE JOINING	65
THE EFFECT OF PTFE CONCENTRATION ON THE WEAR MECHANISM OF ELECTROLESS	05
NI-B-P COATINGS	66
THE FEASIBILITY STUDY OF HP-RTM MANUFACTURABILITY OF THICKER FIBER	00
REINFORCED COMPOSITE	67
	6/
THE INVESTIGATION OF DYNAMIC STRESS EQUILIBRIUM OF CONCRETE AT HIGH	60
STRAIN RATES	68
THE PREPARATION AND CHARACTERIZATION OF WOOD/LUFFA FIBER FILLED	
COMPOSITES FROM RECYCLED PLASTICS	69
THE SYNTHESIS OF POLYSACCHARIDE BASED HYDROGEL FROM WASTE CORNSTALK	
FOR PACKING MATERIAL	70
THERMO-MECHANICAL PROPERTIES OF 3D PRINTED BORON CARBIDE	
NANOPARTICLE FILLED POLYMERIC STRUCTURES	71
THORIUM ADSORPTION ON MNO2-IMPREGNATED ACTIVATED CARBON	72
TRIBOLOGICAL AND THERMOMECHANICAL PROPERTIES OF BENTONITE AND	
CARBON FIBER REINFORCED PPS MATRIX COMPOSITES	73
USING BLACK CUMIN PULP AS A BIO-BASED FILLER WITHIN EPDM RUBBER	
USING EGGSHELL WASTE AS A BIO-BASED FILLER WITHIN EPDM RUBBER	
VIBRATION ANALYSIS OF LARGE-DEFLECTED CURVED COMPOSITE PLATES USING	
VIBRATION ANALYSIS OF LARGE-DEFLECTED CURVED COMPOSITE PLATES USING DIFFERENT FINITE ELEMENTS	76
VIBRATION ANALYSIS OF LARGE-DEFLECTED CURVED COMPOSITE PLATES USING DIFFERENT FINITE ELEMENTS	76
DIFFERENT FINITE ELEMENTS	76
	76
DIFFERENT FINITE ELEMENTS ABSTRACTS OF POSTER PRESENTATIONS	76
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF	
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78
DIFFERENT FINITE ELEMENTS ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79
DIFFERENT FINITE ELEMENTS	78 79 80
DIFFERENT FINITE ELEMENTS	78 79 80 81
A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81 82
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81 82
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81 82 83
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS A NOVEL POLYMER/MINERAL COMPOSITE: SYNTHESIS AND CHARACTERIZATION	78 79 80 81 82 83
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81 82 83
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81 82 83 84
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81 82 83 84
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81 82 83 84 85
A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 81 82 83 84 85
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 82 83 84 85 86
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 80 82 83 84 85 86
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 81 82 83 84 85 86 87
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78 79 81 82 83 84 85 86 87
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	78808182838485868788
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS. A NOVEL POLYMER/MINERAL COMPOSITE: SYNTHESIS AND CHARACTERIZATION	78808182838485868788
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	7879808182838485868788
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	7879808182838485868788
ABSTRACTS OF POSTER PRESENTATIONS A NEW NON-LINEAR ESTIMATION ALGORITHM FOR THERMAL RESISTANCE OF COTTON FABRICS	7879808182838485868788

COLOR CHANGHING ON GAINED FLAME RETARDANT SEMI-VEGETAL UPHOLSTERY	
LEATHERS BY TRIBUTYL PHOSPHATE	93
COLOR CHANGHING ON GAINED FLAME RETARDANT CHROME TANNED SHOES UPPER	
LEATHERS BY TRIBUTYL PHOSPHATE	94
LEATHERS BY TRIBUTYL PHOSPHATECOMPARISON OF MODIFICATION TECHNIQUES OF CARBON NANOTUBES FOR EUROPIUM ADSORPTION	95
COMPOSITE CERAMIC MATERIALS IN NUCLEAR WASTE MANAGEMENT	96
COMPOSITE POLYSACCARIDE NANOFIBERS BY ELECTROSPINNING TO PRODUCE	> 0
WATER-INSOLUBLE STRUCTURES	97
CROSSLINKED CHITOSAN-GELATIN-HYDROXYAPATITE NANO-BIOCOMPOSITE) /
PREPARATION AND CHARACTERIZATION FOR BONE TISSUE ENGINEERING	98
DESALINATION BY COMPOSITE ION EXCHANGE MEMBRANE BASED BIPOLAR	70
MEMBRANE ELECTRODIALYSIS FOR ACID AND BASE PRODUCTION	99
DESIGN AND ANALYSIS OF FLAT FOAM CORE SANDWICH PANELS FOR MAXIMUM	, ,
FUNDAMENTAL FREQUENCY	100
DESIGN OF 99mTc RADIOLABELLED POLYMERIC NANOPARTICLES,	. 100
CHARACTERIZATION AND IN VITRO STUDIES	101
DEVELOPMENT AND CHARACTERIZATION OF ZIRCONIUM OXIDE AND PALLADIUM	. 101
NANOPARTICLE COMPOSITE ELECTRODES AND INVESTIGATION OF THEIR	
ELECTROCATALYTIC APPLICATIONS	102
DEVELOPMENT OF COMPOSITE CERAMIC MATRIX FOR ALTERNATIVE RADIATION	. 102
SHIELDING MATERIALS	103
DEVELOPMENT OF PULSED DEPOSITED MANGANESE AND MOLYBDENUM OXIDE	. 102
SURFACES DECORATED WITH PLATINUM NANOPARTICLES AND THEIR CATALYTIC	
APPLICATION FOR FORMALDEHYDE OXIDATION AND OXYGEN REDUCTION	104
DIELECTRIC PROPERTIES OF THE SODIUM FLUORIDE DOPED TALC MINERALS	
EFFECT OF DIFFERENT PLASTICIZERS ON THE PHYSICAL PROPERTIES OF FILMS	. 105
BASED ON COLLAGEN HYDROLYSATE DERIVED FROM LEATHER TRIMMINGS	106
EFFECT OF PLASTICIZER ON PROPERTIES OF GELATIN BASED COMPOSITE FILMS	
EFFECT OF SIC RATIO ON SIC REINFORCED AG MATRIX NANOCOMPOSITE COATINGS	.107
BY ELECTRODEPOSITION	108
EFFECT OF SINTERING TIME ON MECHANICAL PROPERTIES OF MG/B ₄ C METAL	. 100
MATRIX COMPOSITES PRODUCED BY HOT PRESSING	109
EFFECT OF SURFACTANT CONCENTRATION ON NI-P-B-TIO ₂ COMPOSITE COATINGS	. 107
PRODUCED BY ELECTROLESS PLATING TECHNIQUE	110
EFFECT OF WOOD WASTE FILLER ON MECHANICAL AND THERMO-MECHANICAL	. 110
PROPERTIES OF POLYPROPYLENE	111
ESSENTIAL OIL INCORPORATED COMPOSITE COATINGS FOR FOOD PACKAGING	
APPLICATIONS	112
ESTIMATION OF PB(II) AND CU(II) REMOVAL EFFICIENCY BY USING NON-LINEAR	. 112
REGRESSION MODEL	113
EXTRACTION AND SEPARATION STUDIES OF RARE EARTH ELEMENTS USING CYANEX	
272 IMPREGNATED AMBERLITE XAD 16 RESIN	114
FABRICATION, CHARACTERIZATION AND CATALYTIC APPLICATIONS FOR DISSOLVED	
OXYGEN OF PALLADIUM DECORATED COPPER MOLYBDENUM OXIDE MODIFIED	
GLASSY CARBON ELECTRODE	115
FASILE PREPARATION METHOD OF P-CONJUGATED POLYMER COMPOSITE WITH	. 115
CELLULOSE NANOFIBER AND SILICA MICRO SPHERE	116
FILLER AND INITIATOR EFFECT ON PROPERTIES OF UNSATURATED POLYESTER	. 110
COMPOSITES	117
FORMULATION OF AN ALGINATE-SILICA HYBRID HYDROGEL FOR BIOCATALYTIC	. 11/
CONVERSION WITHIN A MICROFLUIDIC PLATFORM	118
FROM LAB TO INDUSTRY: A JOURNEY OF DIFFERENT RENEWABLE RESOURCES FOR	. 110
CHITIN-CHITOSAN BASED BIOCOMPOSITE MATERIALS	110
GAS BARRIER PROPERTIES OF PLA/SILICA NANOCOMPOSITE FILMS	
GELATIN BASED COMPOSITE FILMS FOR FOOD PACKAGING APPLICATIONS	
GEMCITABINE LOADED SPION-PLGA NANOPARTICLES: SYNTHESIS,	. 121
CHARACTERIZATION AND RADIOLABELING STUDIES	122
GRAPHENE OXIDE-FE ₃ O ₄ -POLYPYRROLE TERNARY NANOCOMPOSITE FOR USNIC ACID	. 144
LOADING AND RELEASE	123

HIGH GENERATION DENDRIMER FUNCTIONALIZED ELECTROSPUN NANOFIBERS	.124
HYDROXYAPATITE IS BIOMATERIALS: ITS CHEMICAL SYNTHESIS	
CHARACTERIZATION SHELL OF CYPRAEA ANNULUS	.125
IMPROVED ESTIMATION OF IONIC CONDUCTIVITY FOR SOLID POLYMER	
ELECTROLYTE SYSTEM	.126
INFLUENCE OF LAVENDER OIL CONCENTRATION ON THE MICROENCAPSULATION	
PARAMETERS OF COLLAGEN HYDROLYSATE-WALLED MICROCAPSULES	.127
INFLUENCE OF USING SIC OR AL ₂ O ₃ FRONT LAYERS ON THE HIGH SPEED IMPACT	
PERFORMANCE OF A BAINITIC STEEL	.128
INJECTABLE HYDROGELS FOR MICROFLUIDIC APPLICATIONS	.129
INTERCALATION OF CLAY MINERALS WITH AN ANTIBACTERIAL AGENTS FOR	
ELECTROSPUN NANOFIBERS	.130
INVESTIGATION OF CHARACTERIZATION OF PERLITE FROM AEGEAN AREA (TURKIYE)	
MODIFIED WITH N,N-DIETHYL ETHANOL AMMONIUM CHLORIDE (DAC)	.131
INVESTIGATION OF CHITOSAN NANOPARTICLES BEARING RADIOLABELLED -	
CEFPODOXIME PROXETIL FOR NUCLEAR IMAGING POTENTIAL OF INFECTION	.132
INVESTIGATION OF DIATOM AND ALGINATE COMPOSITES AS A BIOINK FOR 3D	
BIOPRINTING	.133
INVESTIGATION OF HYBRID PLY EFFECT ON BURST PRESSURE PERFORMANCE OF	
COMPOSITE OVERWRAPPED PRESSURE VESSELS	.134
INVESTIGATION OF THORIUM ADSORPTION ONTO MWCNT-MNO ₂ BY USING CENTRAL	
COMPOSITE DESIGN	.135
IONIC LIQUIDS BASED COMPOSITE MODIFIED ELECTRODES DEVELOPED FOR	
ELECTROCHEMICAL DETECTION OF DRUG-DNA INTERACTION	.136
IRON OXIDE NANOPARTICLE REINFORCED SELF-ASSEMBLED PEPTIDE GEL	
PRODUCTION AND CHARACTERIZATION	.137
MATERIAL CHARACTERIZATION OF UNDOPED AND CO DOPED ZNO PHOSPHOR BY	
WET CHEMICAL METHOD	.138
MORPHOLOGY AND CORROSION STUDIES OF CNT REINFORCED ELECTROLESS NI-W-	
B-P COMPOSITE COATING	.139
NANOPOLYMERIC SYSTEMS FOR THE CONTROLLED RELEASE OF TEA TREE OIL	.140
NICKEL OXIDE AND ZINC OXIDE HAVE ANTIBACTERIAL ACTIVITY AGAINST	
PATHOGENIC BACTERIA	.141
NOVEL BIOPOLYMER RESOURCES: CHITIN FROM APILARNIL WASTE AND MUSHROOM	.142
PD-BASED COMPOSITE MEMBRANES FOR HYDROGEN SEPARATIONS	.143
PERMANENT SURFACE DEFORMATION ON LIGHT-RESPONSIVE LIQUID CRYSTAL	
POLYMER NETWORK DROPLETS	.144
POLY(LACTIC ACID) BASED SEAWEED BIOCOMPOSITES: MECHANICAL AND THERMAL	
PROPERTIES	.145
POROSITY OF PARTICLE REINFORCED METAL MATRIX NANOCOMPOSITES	.146
PREPARATION AND CHARACTERISATION OF CHITOSAN AND GUNLUK GUM	
HYDROGEL CROSS LINKED BY GLUTARALDEHYDE	.147
PREPARATION AND CHARACTERIZATION OF NEW TYPE BIOPOLYMERIC COMPOSITES	
BASED ON OLIVE POMACE AND MAGNETIC OLIVE POMACE	.148
PREPARATION AND CHARACTERIZATION OF SILVER-DOPED HYDROXYAPATITE	
FROM SEASHELL BY DIFFERENT METHODS	.149
PREPARATION AND CHARACTERIZATION OF WOLLASTONITE-	
POLYMETHYLMETHACRYLATE ARTIFICAL BONES	.150
PREPARATION AND CHARACTERIZATION OF IRON- OLIVE STONE ACTIVATED	
CARBON COMPOSITES WITH TWO DIFFERENT METHOD	.151
PREPARATION AND OPTIMIZATION OF PCL/PAA ELECTROSPUN NANOFIBERS	.152
PREPARATION OF BIOCOMPOSITE MATERIAL USING CHITOSAN-ALOE VERA-SILVER	
NANOPARTICLES SYNTHESIZED IN CENTAURY PLANT EXTRACT AND THEIR	
SYNERGISTIC ACTIVITES ON TEXTILE INDUSTRY	.153
PREPARATION OF HYDROXYAPATITE BIOMATERIALS FOR BENZOIC ACID DELIVERY	
FROM SCOTCH BONNETS SEASHELL BY MICROWAVE PROCESSING	.154
PREPARATION OF PCL/SILVER NANOPARTICLES NANOFIBERS BY ELECTROSPINNING	
METHOD	.155
PREPARATION OF POLYMER MICROSPHERES WITH WRINKLED HARD SURFACES	
COMPOSED OF SILICA NANOPARTICLES	156

PREPARATION OF SILICA AEROGELS FROM RICE HUSKS, INVESTIGATING THE	
PERFORMANCES OF THESE MATERIALS IN PETROLEUM REMOVAL	. 157
PREPARATION OF SiO ₂ -EPOXY BAZED COMPOSITE FOR OBTAINING A HYDROPHILIC	
LEATHER	. 158
PREPARATION OF THE SILICA AEROGEL-FELT COMPOSITES AS A POTENTIAL	
INSULATING MATERIAL	
PRODUCTION AND CHARACTERIZATION OF METAL DOPED-SILICA AEROGELS	. 160
PRODUCTION AND CHARACTERIZATION OF HYDROXYAPATITE-WOLLASTONITE-	
MAGNESIA BIOCOMPOSITE	. 161
PROPERTIES OF POLY(L-LACTIC ACID) FILMS WITH ZEOLITIC IMIDAZOLATE	
FRAMEWORK-8 (ZIF-8) CRYSTALS	. 162
99MTC RADIOLABELED ZOLMITRIPTAN NANOPARTICLES: SYNTHESIS,	
CHARACTERIZATION AND IN VITRO EVALUATION	. 163
RECOVERY OF LA(III) IONS FROM AQUEOUS SOLUTIONS BY MAGNETIC NANO	
GRAPHENE OXIDE COMPOSITE (MNGO)	. 164
SAMARIUM ADSORPTION ONTO MODIFIED CARBON NANOTUBES BY EXPERIMENTAL	_
DESIGN TECHNIQUE	. 165
DESIGN TECHNIQUESTRUCTURAL AND CORROSION PROPERTIES OF TIN REINFORCED ELECTROLESS NI-	
W-B-P COMPOSITE COATINGS	. 166
SYNTHESIS AND CHARACTERIZATION FDG-SPIO (FLORODEOXYGLUCOSE	
CONJUGATED SUPERPARAMAGNETIC IRON OXIDE) NANOPARTICLES AS	
THERANOSTIC	167
SYNTHESIS AND CHARACTERIZATION OF GO-FE ₃ O ₄ -PPY; PHOTOTHERMAL	. 107
PERFORMANCE	168
SYNTHESIS AND CHARACTERIZATION OF GRAPHENE QUANTUM DOTS	169
SYNTHESIS AND CHARACTERIZATION OF POLYACRYLAMIDE-VERMICULITE	. 107
COMPOSITE ADSORBENT	170
SYNTHESIS AND CHARACTERIZATION OF AUFE HYBRID NANOPARTICLES	
SYNTHESIS OF AUFE NANOPARTICLES AND <i>IN VITRO</i> EFFICIENCY ON	. 1 / 1
ADENOCARCINOMA CELLS	172
SYNTHESIS OF PLANT-DERIVED EUGENOL CONJUGATED WITH SILVER	.1/2
NANOPARTICLES (EUG-AGNPS) AND IN VITRO DETERMINATIONS	173
SYNTHESIS OF PLATINUM AND TITANIUM BASED NANOCONJUGATE FOR PROSTATE	. 1 / 3
CANCER	174
TESTING OF CLAYS AS AN ANTI-CANCER DRUG DELIVERY MATERIAL FOR ORAL	. 1 / 4
CHEMOTHERAPY	175
TEXTILE WASTE WATER TREATMENT USING BORON NANOMATERIAL BASED	.1/3
ADSORBENT	176
THE EFFECT OF ZINC METHACRYLATE ON ACCELERATED WEATHERING PROPERTIES	. 1 / 0
OF OF ACRYLIC BINDERS	177
THE INNOVATIONS IN NATURAL FIBER REINFORCED COMPOSITE MATERIALS USED IN	. 1 / /
AUTOMOTIVE INDUSTRY	179
THEORETICAL MODELING OF THERMAL CONDUCTIVITY OF ALUMINA/SILICONE	. 1 / 6
RUBBER COMPOSITES	170
THERMAL DEGRADATION KINETICS OF THE POLYGLYCOLIDE/CLAY	.1/9
	100
NANOCOMPOSITESUPTAKE OF LANTHANUM BY COMPOSITE ALGINATE MICROCAPSULES ENCLOSING	. 180
	101
INORGANIC MATERIAL AND ORGANIC EXTRACTANT	
USE OF GELATIN-CHITOSAN COMPOSITE EDIBLE FILMS IN ACTIVE FOOD PACKAGING	
USE OF GELATIN-GUM ARABIC BASED POLYMERS IN FOOD PACKAGING	. 183
VOLTAMMETRIC NUCLEIC ACID DETECTION BASED ON CARBON NANOTUBES	10.
COMPOSITE MODIFIED BIOSENSOR	
WEAR PERFORMANCE OF THE WC-NI COMPOSITE HARDFACING COATING	. 185
ZİRCONIUM OXIDE BASED NANOCOMPOSITES SYNTHESIZED IN THE PRESENCE OF	100
CARBON DOTS	. 186

FULL TEXTS OF ORAL PRESENTATIONS

A NOVEL METHOD OF DETERMINING COMPRESSION AFTER IMPACT BEHAVIOR OF	
POLYMER COMPOSITES USING CORRUGATED CORE PROJECTILES: EXPERIMENTAL	
AND NUMERICAL INVESTIGATION	188
ADSORPTION AND CHARACTERIZATION OF MALACHITE GREEN ONTO CHESTNUT SHELL	198
APPLICATION OF IMIDAZOLIUM BASED IONIC LIQUIDS FOR THE PREPARATION OF	
HYBRID SILICA AEROGELS	207
ATTAPULGITE/FATTY ACID EUTECTIC MIXTURE AS FORM-STABLE BUILDING	
COMPOSITE FOR THERMAL ENERGY STORAGE	217
BIOCOMPATIBLE DELIVERY SYSTEM FOR METFORMIN: CHARACTERIZATION,	
RADIOLABELING AND IN VITRO STUDIES	226
BOLTED JOINTS IN THREE AXIALLY BRAIDED CARBON FIBRE/EPOXY TEXTILE	
COMPOSITES WITH MOULDED-IN AND DRILLED FASTENER HOLES	231
CATALYTIC ACTIVITY OF IRON@ PLATINUM NANOPARTICLES INVOLVED CALCIUM	
ALGINATE BEADS FOR THE REDUCTION OF NITROPHENOLS	239
CHARACTERIZATION AND MECHANICAL PROPERTIES OF B4C PARTICLE REINFORCED	
ALUMINUM MATRIX COMPOSITESS PRODUCED BY MECHANICAL MILLING AND	2.42
HOT PRESSING	243
COLUMN ADSORPTION OF LEAD IONS FROM AQUEOUS SOLUTIONS USING AMINO ACID FUNCTIONALIZED MAGNETIC NANOPARTICLES	252
COMBUSTION AND MECHANICAL PROPERTIES OF HDF PANELS WITH FIRE-	232
RETARDANT CHEMICALS	257
COMPARISON OF MICROBIOLOGICAL DETERIORATION OF FRIED SARDINES	.251
SANDWICHES CARRIED IN A HEAT INSULATED BAG AND IN AN ORDINARY	
BACKPACK DURING AN OUTDOOR SPORT ACTIVITY	264
COMPRESSION TESTING OF CARBON/EPOXY COMPOSITE TUBES PRODUCED BY	20 .
DIFFERENT MANUFACTURING TECHNIQUES	277
COMPRESSIVE AND FLEXURAL BEHAVIOUR OF PIN REINFORCED MARINE COMPOSITE	
SANDWICH BEAMS	286
DEVELOPMENT OF FIXED END TYPE FLEXURAL FATIGUE TEST MACHINE AND STATIC	
AND DYNAMIC BEHAVIOUR OF GLASS/EPOXY LAMINATED COMPOSITE	300
DIFFUSION KINETICS OF THE PLASTICIZER FROM PLASTICIZED PVC/CLAY AND	
PVC/BORON COMPOSITE FILMS	318
EFFECT OF BORON WASTE SLURRY, HEAT STABILIZER AND PLASTICIZER AMOUNT	
ON MIGRATION BEHAVIOUR OF PLASTICIZERS FROM POLY (VINYL CHLORIDE)	226
(PVC) FILMS	326
EFFECT OF DISPERSION QUALITY ON EXPERIMENTAL DAMPING BEHAVIOUR OF	225
GRAPHENE MODIFIED STRUCTURAL ADHESIVESEFFECT OF MECHANICAL MILLING ON MECHANICAL PROPERTIES AND	333
MICROSTRUCTURE OF AL/B4C COMPOSITES MANUFACTURED BY POWDER	
METALLURGY	216
EFFECT OF MUF ADHESIVE CONTENT AND FORMALDEHYDE/UREA MOLAR RATIO ON	
MECHANICAL PROPERTIES OF MEDIUM DENSITY FIBERBOARD	355
EFFECT OF NANO-SIZED REINFORCEMENT PARTICLES ON THE MECHANICAL	
PROPERTIES OF MAGNESIUM MATRIX COMPOSITES	360
ELASTIC AND THERMAL PROPERTIES OF WC/ CO-TI CERAMIC-METAL COMPOSITES:	
EFFECTS OF WC RATIO	366
ENCAPSULATION OF PROTOPORPHYRIN-X/MANGANESE OXIDE IN NIOSOMES AS	
THERANOSTIC	374
FABRICATION OF COPPER DOPED BIOACTIVE GLASS/POLYMER COMPOSITE	
SCAFFOLDS	
FUTURE PROSPECTS OF BIOCOMPOSITES	390
HEATING GRADIENT OF THE CARBON FIBER REINFORCED THERMOPLASTIC	
COMPOSITE MATERIALS DURING INDUCTION HEATING AND INVESTIGATION OF	
INDUCTION COIL EFFECT	401
IMPACT BEHAVIOR OF GLASS FIBER REINFORCED POLYPROPYLENE COMPOSITES	400
WITH DIFFERENT PRELOADS	
	/1 1 h

INVESTIGATION OF MICROSTRUCTURE AND MICROMECHANICAL PROPERTIES OF	
FUNCTIONALLY GRADED FE/B ₄ C MATERIALS AFTER DIFFERENT THERMAL CYCLES	.430
INVESTIGATION OF THE EFFECT OF THE USE OF RECYCLED FIBERS ON COMPOSITE	
MATERIAL PROPERTIES	. 444
INVESTIGATION OF THE EFFECTS OF IONIC LIQUIDS IN THE ELECTROLESS METAL	
PLATING PROCESS OVER ABS PLASTIC	. 452
INVESTIGATION OF THE USE OF THIN FILM POLYMERIC COMPOSITE DK MEMBRANE	
FOR COD REMOVAL FROM TEXTILE INDUSTRIAL WASTE WATER	. 459
INVESTIGATION THE EFFECT OF SILICA AEROGEL CONTENT ON THE MECHANICAL	
PROPERTIES OF EPOXY RESIN SYSTEM	. 468
IN-VITRO BIODEGRADATION OF MG/MGZN/ZN COMPOSITES PRODUCED BY	
MECHANICAL ALLOYING AND HOT PRESSING	. 476
MAGNETICALLY RECYCLABLE FE ₃ O ₄ @TİO ₂ COMPOSITES IN PHOTOCATALYIC	
DEGRADATION OF RHODAMINE 6G DYE UNDER VISIBLE-LIGHT IRRADIATION	. 491
MECHANICAL BEHAVIOR OF SHEAR DEFICIENT RC BEAMS STRENGTHENED WITH	
CARBON FIBER REINFORCED POLYMERS	. 502
MULTIFUNCTIONAL MOLECULAR IMAGING PROBES FOR ESTROGEN RECEPTORS:TC-	
99M LABELED DIETHYLSTILBESTROL (DES) CONJUGATED, CUINP/INP QUANTUM	
DOT NANOPARTCILES	. 509
MULTILAYER WOVEN FABRICS MADE FROM VECTRAN FOR COMPOSITE	
APPLICATIONS	.516
NANO SIO ₂ MODIFIED PZT COMPOSITE FILM	. 523
NANOCOMPOSITES AND ITS APPLICATIONS IN ENERGY CONVERSION AND STORAGE	
DEVICES	. 531
NZVI ENHANCED DECOLORIZATION OF COMMERCIAL TEXTILE DYE	
PHYSICAL, MECHANICAL, AND THERMAL PROPERTIES OF WOOD-PLASTIC	
COMPOSITES WITH NANOCLAY	554
PREPARATION AND THERMAL PROPERTIES OF GLYCEROL-NI(NO ₃) ₂ 6H ₂ O /PERLITE	. 55 1
COMPOSITE AS PHASE CHANGE MATERIALS	550
PREPARATION AND UTILIZATION OF Λ -MNO ₂ FOR SELECTIVE SEPARATION OF	. 557
LITHIUM FROM GEOTHERMAL WATER BY ADSORPTION-MEMBRANE FILTRATION	
	566
HYBRID METHOD	. 300
PREPARATION OF CYANEX 302 IMPREGNATED COMPOSITE FIBER ADSORBENT FOR	572
REMOVAL OF HEAVY METAL IONS FROM AQUEOUS SOLUTION	.3/3
PRODUCTION AND CHARACTERIZATION OF MODIFIED OLIVE POMACE - MAGNETITE	502
NANOCOMPOSITE MATERIAL	. 582
PRODUCTION OF SYNTHETIC COMPOSITE MINERAL AS MINERAL ADMIXTURE IN	500
CONCRETE	
SILICA BASED HYBRID NANOPARTICLES FOR DRUG DELIVERY	. 604
SILICAFUME/LAURIC ACID (LA) COMPOSITE AS A NOVEL FORM-STABLE PHASE	600
CHANGE MATERIAL FOR THERMAL ENERGY STORAGE	
SILK FIBRION NANOPARTICLES FOR BIOACTIVE COMPOSITE MATERIALS	
SMART LAYERED SYSTEMS BASED ON LIQUID CRYSTAL POLYMER NETWORK	. 627
SOLUBLE EGGSHELL MEMBRANE PROTEIN NANOPARTICLES FOR BIOACTIVE	
COMPOSITE MATERIALS	. 640
STACKING SEQUENCE OPTIMIZATION AND MODELING OF LAMINATED COMPOSITE	
PLATES FOR FREE VIBRATION	. 648
SUBACUTE TOXICITY OF DIMETHYL ISOPHTHALATE AS PLASTICIZER AND ADDITIVE	
IN SYNTHETIC POLYMERS	. 669
SYNTHESIS OF YTTRIUM OXIDE (Y ₂ O ₃) NANOPARTICLES AND MODIFICATION WITH	
ALGINIC ACID (Y ₂ O ₃ -NP-ALGINATE)	. 676
SYNTHESIS, STRUCTURAL AND OPTICAL PROPERTIES OF CO-DOPED ZNO	
NANOPARTICLES	. 688
TECHNOLOGICAL PROPERTIES OF THREE-LAYERED PARTICLABOARD WITH TEXTILE	. 55
DUST IN THE MIDDLE LAYER	. 698
TEXTILE FIBER REINFORCED COMPOSITES USED IN PACKAGING INDUSTRY	
THE EFFECT OF FIBER DISTRIBUTION ON FLEXURAL PERFORMANCE OF ENGINEERED	., 07
CEMENTITIOUS COMPOSITES	716
THE EFFECT OF GLASS FIBER REBAR REINFORCEMENT ON FLEXURAL BEHAVIOUR OF	. , 10
REINFORCED CONCRETE STRUCTURAL FLEMENTS	725

THE EFFECT OF PVA FIBER RATIO ON RIGID PAVEMENT OVERLAY PERFORMANCE OF	
ENGINEERED CEMENTITIOUS COMPOSITES	
THE EFFECT OF SILVER ON ELECTRICAL CONDUCTIVITY OF CU-B $_4$ C-AG COMPOSITES	749
THE EFFECTS OF SOME TRANSITION METAL SULFATE SALTS ON CASTING	
PROPERTIES OF CERAMIC SLUDGE	756
THE ROLE OF MATRIX STRENGTH ON FLEXURAL BEHAVIOR OF HIGH TENACITY	
POLY-PROPYLENE FIBER REINFORCED ENGINEERED CEMENTITIOUS COMPOSITES	
(HTPP-ECC)	765
THE USE OF TUNGSTEN OXIDE MODIFIED TITANIUM NANOTUBE ELECTRODES AS A	
PLATFORM FOR PHOTOELECTROCHEMICAL DEGRADATION	774
THERMAL ENERGY STORAGE CHARACTERISTICS OF MICRO-NANOENCAPSULATED	
LAURIC-STEARIC ACID EUTECTIC MIXTURE WITH POLYSTYRENE SHELL	780
THERMAL ENERGY STORAGE CHARACTERISTICS OF SILICA FUME/PCM/MWCNTS AS	
THERMAL ENHANCED COMPOSITE MATERIAL FOR THERMAL MANAGEMENT OF	
BUILDINGS	790
TRIBOLOGICAL PROPERTIES OF CARBON AND GLASS FIBER REINFORCED POLY-	
ETHER-ETHER-KETONE COMPOSITES AGAINST STEEL AND POLYESTER	
THERMOSET COMPOSITE	801
TRIBOLOGICAL PROPERTIES OF CHITOSAN FILLED POLYPROPYLENE (PP) POLYMER	
COMPOSITES AGAINST STEEL UNDER DRY SLIDING CONDITION	810
USE OF NANOCLAY FOR FLAME RETARDANT FINISHING OF COTTON AND POLYESTER	
FABRICS	821
WELDEBLITY OF THE CARBON FIBER REINFORCED THERMOPLASTIC COMPOSITES BY	
USING BY ULTRA HIGH FREQUENCY INDUCTION SYSTEM	833
89ZR LABELED FE ₃ O ₄ @TIO ₂ NANOPARTICLES	
FULL TEXTS OF POSTER PRESENTATIONS	
FULL TEXTS OF POSTER PRESENTATIONS	
	853
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	853
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862 869
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862 869
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862 869
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862 869 876 883
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862 869 876 883
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862 869 876 883
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862 869 876 883
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION ATMOSPHERIC PLASMA APPLICATIONS AS AN ECOLOGICAL SURFACE MODIFICATION PROCESS ON FLAX FIBER REINFORCED COMPOSITE MATERIALS BIO-INSPIRED COMPOSITE CATALYST PREPARATION FROM POLLEN BIOTEMPLATES EFFECTS OF MOLECULAR WEIGHT ON MECHANICAL PROPERTIES OF FLEXIBLE POLYMER NANOCOMPOSITES EFFECTS OF PROCESS PARAMETERS ON DENSITY AND HARDNESS OF AI/B4C COMPOSITES PRODUCED BY HOT PRESSING TECHNIQUE ELECTROSPUN NANOCOMPOSITE POLYAMIDE FIBERS FABRICATION AND MORPHOLOGICAL CHARACTERIZATION OF ELECTROSPUN NANOCOMPOSITE POLYACRYLONITRILE FIBERS FLORESCENT CARBON NANODOT EMBEDDING TRAGACANTH GUM BASED MICROPOROUS GELS	858 862 869 876 883 888
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION ATMOSPHERIC PLASMA APPLICATIONS AS AN ECOLOGICAL SURFACE MODIFICATION PROCESS ON FLAX FIBER REINFORCED COMPOSITE MATERIALS. BIO-INSPIRED COMPOSITE CATALYST PREPARATION FROM POLLEN BIOTEMPLATES. EFFECTS OF MOLECULAR WEIGHT ON MECHANICAL PROPERTIES OF FLEXIBLE POLYMER NANOCOMPOSITES. EFFECTS OF PROCESS PARAMETERS ON DENSITY AND HARDNESS OF Al/B4C COMPOSITES PRODUCED BY HOT PRESSING TECHNIQUE ELECTROSPUN NANOCOMPOSITE POLYAMIDE FIBERS. FABRICATION AND MORPHOLOGICAL CHARACTERIZATION OF ELECTROSPUN NANOCOMPOSITE POLYACRYLONITRILE FIBERS FLORESCENT CARBON NANODOT EMBEDDING TRAGACANTH GUM BASED MICROPOROUS GELS. INVESTIGATION OF POTENTIAL USABILITY OF POLYMERIC STRUCTURES FOR DYE REMOVAL FROM LEATHER WASTE	858 862 869 876 883 888
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862 869 876 883 888
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION ATMOSPHERIC PLASMA APPLICATIONS AS AN ECOLOGICAL SURFACE MODIFICATION PROCESS ON FLAX FIBER REINFORCED COMPOSITE MATERIALS. BIO-INSPIRED COMPOSITE CATALYST PREPARATION FROM POLLEN BIOTEMPLATES EFFECTS OF MOLECULAR WEIGHT ON MECHANICAL PROPERTIES OF FLEXIBLE POLYMER NANOCOMPOSITES EFFECTS OF PROCESS PARAMETERS ON DENSITY AND HARDNESS OF Al/B4C COMPOSITES PRODUCED BY HOT PRESSING TECHNIQUE ELECTROSPUN NANOCOMPOSITE POLYAMIDE FIBERS. FABRICATION AND MORPHOLOGICAL CHARACTERIZATION OF ELECTROSPUN NANOCOMPOSITE POLYACRYLONITRILE FIBERS FLORESCENT CARBON NANODOT EMBEDDING TRAGACANTH GUM BASED MICROPOROUS GELS. INVESTIGATION OF POTENTIAL USABILITY OF POLYMERIC STRUCTURES FOR DYE REMOVAL FROM LEATHER WASTE NATURAL FIBER REINFORCED COMPOSITES	858 862 869 876 883 888
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION ATMOSPHERIC PLASMA APPLICATIONS AS AN ECOLOGICAL SURFACE MODIFICATION PROCESS ON FLAX FIBER REINFORCED COMPOSITE MATERIALS. BIO-INSPIRED COMPOSITE CATALYST PREPARATION FROM POLLEN BIOTEMPLATES. EFFECTS OF MOLECULAR WEIGHT ON MECHANICAL PROPERTIES OF FLEXIBLE POLYMER NANOCOMPOSITES. EFFECTS OF PROCESS PARAMETERS ON DENSITY AND HARDNESS OF AI/B4C COMPOSITES PRODUCED BY HOT PRESSING TECHNIQUE. ELECTROSPUN NANOCOMPOSITE POLYAMIDE FIBERS. FABRICATION AND MORPHOLOGICAL CHARACTERIZATION OF ELECTROSPUN NANOCOMPOSITE POLYACRYLONITRILE FIBERS. FLORESCENT CARBON NANODOT EMBEDDING TRAGACANTH GUM BASED MICROPOROUS GELS. INVESTIGATION OF POTENTIAL USABILITY OF POLYMERIC STRUCTURES FOR DYE REMOVAL FROM LEATHER WASTE. NATURAL FIBER REINFORCED COMPOSITES NATURAL FIBER REINFORCED UNIDIRECTIONAL THERMOPLASTIC PREPREGS: THE NEW WAY OF DESIGNING LIGHTWEIGHT INTERIOR PANELS FOR AUTOMOTIVE	858 862 869 883 888 892 898
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION	858 862 869 883 888 892 898
A SUSTAINABLE APPROACH FOR POLYMER COMPOSITE PRODUCTION ATMOSPHERIC PLASMA APPLICATIONS AS AN ECOLOGICAL SURFACE MODIFICATION PROCESS ON FLAX FIBER REINFORCED COMPOSITE MATERIALS. BIO-INSPIRED COMPOSITE CATALYST PREPARATION FROM POLLEN BIOTEMPLATES. EFFECTS OF MOLECULAR WEIGHT ON MECHANICAL PROPERTIES OF FLEXIBLE POLYMER NANOCOMPOSITES. EFFECTS OF PROCESS PARAMETERS ON DENSITY AND HARDNESS OF AI/B4C COMPOSITES PRODUCED BY HOT PRESSING TECHNIQUE. ELECTROSPUN NANOCOMPOSITE POLYAMIDE FIBERS. FABRICATION AND MORPHOLOGICAL CHARACTERIZATION OF ELECTROSPUN NANOCOMPOSITE POLYACRYLONITRILE FIBERS. FLORESCENT CARBON NANODOT EMBEDDING TRAGACANTH GUM BASED MICROPOROUS GELS. INVESTIGATION OF POTENTIAL USABILITY OF POLYMERIC STRUCTURES FOR DYE REMOVAL FROM LEATHER WASTE. NATURAL FIBER REINFORCED COMPOSITES NATURAL FIBER REINFORCED UNIDIRECTIONAL THERMOPLASTIC PREPREGS: THE NEW WAY OF DESIGNING LIGHTWEIGHT INTERIOR PANELS FOR AUTOMOTIVE	858 869 876 883 888 892 908

ABSTRACTS OF INVITED SPEECHES

CHARACTERISATION OF HIGH PERFORMANCE COMPOSITES WITH SPECIAL REFERENCE TO THE INTERFACE SUBSTRATE/RESIN MATRIX — NANO INTERFACE HAS MEGA ROLE IN THE COMPOSITES ARCHITECTURE.

Dr. Amir Hussain

COMTECH GmbH Rohrauerstr. 70, 81477 Munich, Germany

ABSTRACT

For high performance composites, a precise knowledge of the substrate surface is of immense importance. Inorganic as well as organic substrates are often pretreated -- plasma, corona, silane coupling agent etc. -- before an adhesive is applied for bonding. Topography, wettability, chemical functionality and cleanness of the surface play very important role in the quality of adhesion. Each of these 4 factors plays a crucial role and the contribution of these factors to the quality and durability of the end-product composite is additive.

For accurate characterisation of the surface, advanced analytical techniques like AFM, ESCA and TOFSIMS have proved to be of great benefit. These modern tools have gone a long way in providing an insight into the surface / interface of the bonded materials and the main cause of adhesion failure. Contamination is one of the main enemies in industrial bonding; ESCA and TOFSIMS have proved to be very effective to identify and combat the enemy. The properties profile of the composites are investigated with the help of thermomechanical techniques like DSC / DMA.

Failure analyses of composites conducted by Comtech over 10 years point out in over 75 % of studies to the interface.

NANOPARTICLE-WEBBED HYBRID HYDROGELS

Makoto TAKAFUJI*^{1,2}, Md. Ashraful ALAM^{1,3}, and Hirotaka IHARA*^{1,2}

1 Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto, 860-855, Japan

2Kumamoto Institute for PhotoElectro Organics (Phoenics), 862-0901 Kumamoto, Japan. 3Department of Applied Chemistry and Chemical Engineering, Noakhali Science and Technology University, Noakhali-3814 Bangladesh

takafuji@kumamoto-u.ac.jp, ihara@kumamoto-u.ac.jp

ABSTRACT

Recently hybrid hydrogels with new class of crosslinking system have been attracting considerable attention because of their unique properties and wide range applicability in various fields. We have developed nanoparticle-webbed hybrid hydrogels in which the polymer network was multiply-crosselinked with silica nanoparticles (Web-GEL). This hybrid hydrogels were prepared in a facile manner involved simple mixing of an aqueous solution of a water-soluble copolymer having reactive side chains with an aqueous suspension of silica nanoparticles. The properties of hybrid hydrogels can be tuned very easily only by modulating the properties of copolymer (chemical structure and concentration) and nanoparticles (concentration). In this presentation, we will describe the following topics of the hybrid hydrogels.

- 1. Preparation of Web-GEL and their versatility.
- 2. Mechanical and swelling/de-swelling properties of Web-GEL.
- 3. Thermo-responsible Web-GEL and their application for drug release.
- 4. Preparation of microspherical hybrid hydrogels.

It is expected that the hybrid polymer hydrogels prepared according to the strategy presented in this paper will find applications in various fields such as the medical and pharmaceutical sciences and environmental and industrial technologies.

Keywords: Multiple-crosslinking / Inorganic nanoparticles / Polymer network structure / Gel particles

COMPOSITES IN NEW APPROACHES FOR SELECTIVE SEPARATION

Marek BRY.JAK

ABSTRACT

A demand for new materials dedicated to separation processes has been developed last decades greatly. The supply cannot be completed by delivery of brand new separators as there is observed a stabilization in their production. History of polymers is the best example of that phenomenon - production of these commodities reached the value of 350 million metric tons several years ago and has not exceeded so far. In such situation, the search has focused on composites that merges properties of few components and creates new entities that, due to synergy effect, offer interesting features.

The lecture will be illustrated with examples showing the use of polymer composites in preparation of membranes, electrodes and sorbents. In the first case – coverage of membrane surface with grafted polymer and/or nanoparticles allowed to change surface character and made it hydrophobic or hydrophilic. The second approach for membrane modification was formation of stimuli responsible membranes that allowed to control permeation of lithium ions. In the case of electrodes preparation, composites of manganese oxide with titanium oxide will be presented for selective separation of lithium salts in the ion-pumping systems. Finally, preparation of core-shell sorbents useful for selective recovery of noble metals will be presented.

NANO-ENGINEERED COMPOSITE ELECTROSPUN POLYMERIC MEMBRANES FOR DESALINATION AND WATER TREATMENT

Mohammad Mahdi A. Shirazi Membrane Industry Development Institute, Tehran, Iran mmahdiashirazi@gmail.com

ABSTRACT

Composite fibrous structures with nano-scale diameters offer a multitude of fascinating features, including large specific area and promising mechanical behavior for a wide range of applications. The large specific area also gives them high functionalization ability. There are different methods for generating composite nano-fibrous structures. However, among them electrospinning is rapidly emerging as a simple and versatile technique in which careful control of operating conditions and polymer solution properties enables the production of highly porous structures of nano-fibers. Electrospinning is a very promising technique by which polymer fibers with diameters ranging from a few nano-meters to several micro-meters can be produced using an electrostatically driven jet of polymer solution. Compared to conventional techniques for membrane fabrication, such as phase inversion, electrospinning allows the formation of three dimensional interconnected pore structure with uniform pore size and porosities $\geq 90\%$. As a result, nano-engineered composite fibrous membranes are increasingly being applied to many water treatment applications such as membrane distillation (MD) and pre-treatment of feed prior to reverse osmosis (RO) or nanofiltration (NF) processes by the removal of contaminants. In this presentation, the preparation and application of nano-engineered composite electrospun membranes for desalination and water treatment purposes are discussed.

NANOCOMPOSITE THIN FILMS AND COATINGS

Assoc. Prof. Cenk Aktas Christian-Albrechts-University Saarland University

ABSTRACT

For future and as well as today's technologies it is difficult to satisfy sophisticated requirements by using "a single material". Nanocomposites, which are basically composed of a host matrix and nanoscaled filler material(s), have emerged alternatives to overcome limitations of conventional single phase materials. In surface technologies used in wide application areas ranging from mechanical components to solar energy and from electronics to medicine, nanocomposite thin films and coatings provide various advantages.

This lecture will cover a brief review on functional nanocomposite thin films and coatings. In the first part basics of such surfaces including synthesis any analysis approaches will be briefly introduced. In the second part some case studies will be provided by giving examples of polymer-metal and metal-metal oxide nanocomposite thin films. The importance of interface and surface modification in nanocomposite and as well as other composite technologies will be discussed. Afterwards applications of nanocomposite thin films and coatings for several sectors including the aerospace, automotive, electronics and biotechnology industries will be presented.

BIOLOGICAL INTERACTIONS WITH MATERIAL SURFACES

Yannis Missirlis, University of Patras, Greece

ABSTRACT

When materials interact with biological entities, i.e. biomolecules, cells, bacteria, tissues, there is a considerable dynamic interaction resulting in responses of the biological part, partially determined by the surface properties of the materials.

The composition of the non-living material surface determines its physicochemical properties, including chemical groups, charge distribution, topographical features, mechanical properties, all of which are interrogated by the cells and bacteria that come into contact with it. The system (bio-nonbio) is dynamic, not only on its own, but because usually it is under external force fields, such as flow conditions.

A cascade of information at the biointerphase, part of which is referred as mechanotransduction, reaches into the nucleus of the cells and initiates a series of reactions, including gene expressions. In this presentation examples will be given on the role of topography, chemistry and mechanical signaling, emanated from the material surface, on the cellular and bacterial responses.

THE ROLE OF MATRIX STRENGTH ON FLEXURAL BEHAVIOR OF HIGH TENACITY POLY-PROPYLENE FIBER REINFORCED ENGINEERED CEMENTITIOUS COMPOSITES (HTPP-ECC)

Yunus SEYREK¹, Eren GÖDEK², Kamile TOSUN FELEKOĞLU³, Burak FELEKOĞLU³

¹Izmir University of Economics, Faculty of Engineering, Department of Civil Engineering, Izmir, TURKEY

² Hitit University, Vocational School of Technical Sciences, Department of Construction Technology, Çorum, TURKEY

³ Dokuz Eylul University, Faculty of Engineering, Department of Civil Engineering, İzmir, TURKEY

yunus.seyrek@ieu.edu.tr

ABSTRACT

Cement based composites such as concrete exhibit low flexural strength and are vulnerable to cracking due to their brittle structure. To overcome this weakness, different types of fibers are used as reinforcement. In this study, the effect of matrix strength on flexural performance of High Tenacity Poly-propylene (HTPP) fiber incorporating Engineered Cementitious Composites (ECC) has been investigated. Matrices with two different strengths were prepared. While the first matrix was consisted of a composition of cement and limestone (strong matrix); second matrix was consisted of 50% of fly ash substituted with cement (weak matrix). 25x60x300 mm sized samples were prepared from each matrix and water cured until testing. Four point flexural tests were conducted at 28 and 90 days. Strong matrix presented more favourable results in terms of flexural performance within the scope of this study. The first crack and flexural strengths of the composites prepared with the strong matrix were 2.45 and 7.91 MPa and for weak matrix these values were 1.06 and 4.01 MPa at 28 days, respectively. Also, the deflection capacity and toughness values of the composites prepared with the strong matrix were calculated as 6.52 mm and 6160 N.mm and for weak matrix they were 4.4 mm and 1901 N.mm at 28 days, respectively. At 90 days the enhancement for first crack strength, flexural strength, deflection capacity and toughness were 90%, 33%, 22% and 57% for strong matrix and %328, %99, %10 and %133 for weak matrix, respectively.

KEYWORDS: Matrix strength, ECC, HTPP, polymeric fiber, flexural strength

1. INTRODUCTION

Conventional concrete is the most common building material due to the availability of low cost raw materials used in its production process and ease of application. The most important advantage of concrete is its high compressive strength. However, concrete has very low tensile and flexural strengths compared to its high compressive strength. For this reason, it easily cracks under tensile and flexural stresses and loses its load carrying capacity (Daniel and Shah, 1994).

Maalej and Li (1994), noted that there were three types of tensile failure modes in cementitous composites: brittle, quasi-brittle and ductile behaviors. Brittle behavior can be observed in cement paste composites whereas concrete and most fiber-reinforced cementitious composites perform quasi-brittle behavior. At brittle behavior there is a sudden drop after first cracking at the stress-strain curve (Figure 1A). Quasi-brittle behavior can be seen at Figure 1B with strain softening after the first cracking. Ultimate tensile strength is equal to first crack strength at both brittle and quasi-brittle composites. Ductile behavior which is represented with C curve at Figure 1 can be characterized by strain hardening behavior after first cracking. These composites are called as strain-hardening cementitious composites and their ultimate strength is higher than their first crack strength. Engineered Cementitious Composites (ECCs) are unique kind of strain hardening cement-based composites produced by using a moderate volume of polymeric fiber (2% in general) (Li et al., 2003).

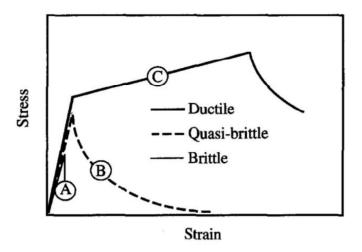


Figure 21. Three types of failure modes on cementitious materials

ECC is designed to exhibit multiple cracking behavior under flexural and tensile loads. At this point, composites with strain capacity 4% and very high toughness values can be produced (Li and Kanda, 1998). ECC also limits the crack width by increasing the number of cracks in the matrix due to the bridging effect of the polymeric fibers. By this way it is an ultra-ductile material that exhibits strain hardening under tensile loads (Fukuyama and Mikame, 1998). The multiple-crack behavior occurs when the load is transferred from cracked section to the other sections by the fibers. This behavior continues until the bridging capacity of fibers at one of the cracked section exceeded (Lin et al., 2014). Polyethylene (PE) was one of the first fiber type used in ECC (Lin et al., 2014). Polyvinyl alcohol (PVA) fibers have been preferred instead of PE to decrease the cost of production (Yang, 2008). Because of their high hydrophilic surface structure, PVA tend to break under tension loads when they used in ECC (Redon et al., 2001). Thus their performance is not fully used if their surface structure is not modified by oiling (Li, 1998). Recently, a new polymeric fiber named as high tenacity polypropylene (HTPP) is used

successfully for producing the ECC including various matrices (Felekoğlu et al., 2014; Tosun-Felekoğlu et al., 2017; Gödek et al., 2017; Keskinateş and Felekoğlu, 2018). In order to facilitate multiple-cracking behavior of ECC fracture toughness of matrix should also be designed by taking the fiber properties into consideration (Li et al., 1995).

In this study, the effect of matrix strength to the flexural behavior of high tenacity polypropylene (HTPP) fiber reinforced ECC was investigated by using two different matrix type (strong and weak matrices). Four-point bending test were conducted to examine the flexural performances of composites prepared by using strong and weak matrices at both 28 (short term) and 90 (long term) days.

2. MATERIALS AND EXPERIMENTAL METHOD

CEM I 42.5R type cement is used in experiments and its physical and chemical properties were presented at Table 1. Limestone powder is used as micro-aggregate which has a specific weight of 2.69. F type fly ash is used in order to obtain different type of matrices. Chemical analysis of the fly ash is shown at Table 2. Polycarboxylate based super plasticizer is used in mixtures. Alkali resistant HTPP fiber is used as reinforcement and its properties were represented in Table 3.

Table 9. Physical and chemical properties of cement

Chemical Analysis (%)		Compressive Strength (MPa)		
SiO ₂	18.81	2 Days	29.90	
Al_2O_3	4.65	7 Days	43.30	
Fe_2O_3	3.33	28 Days	52.80	
CaO	63.58	·		
MgO	1.30	Physical Properties		
$\mathrm{Na_2O}$	0.48	Specific gravity	3.10	
K_2O	0.82	Blaine specific surface area (m^2/kg) 320		
SO_3	3.47	Volume consistency (mm)	0.50	
Cl	0.007	Initial setting time (min)	160	
Free CaO	1.71	Final setting time (min) 265		

Table 2. Physical and chemical properties of fly ash

Component	Chemical Analysis (%)	Component	Chemical Analysis (%)
SiO_2	55.49	CaO	2.43
Al_2O_3	18.72	MgO	4.57
Fe_2O_3	10.02	Na ₂ O	0.51
K_2O	1.66	Loss on ignition	1.3
SO_3	0.38	Free CaO	0.17

Table 3. Physical properties of HTPP fiber

Specific gravity	Length (mm)	Diameter (µm)	Tensile strength (MPa)	Elastic modulus (GPa)	Elongation at rupture (%)
0.91	10	12	850-900	6	21

Two types of matrices were prepared with HTPP fiber and their mixture proportions were presented in Table 4. Weaker matrix incorporating fly ash and was labeled as WM whereas strong matrix was called as SM. Mixtures were prepared by a Hobart mixer. It has three different mixing sequence as 56 rpm (slow), 104 rpm (medium) and 185 rpm (high). Dry ingredients were mixed for 1 minute in slow speed than water was added and mixed 1 more minute at medium speed. Finally, HTPP fibers and super plasticizer were added and mixed 5 min at high speed. Mixtures were molded into 25x60x300 mm prismatic molds and covered with plastic bag in order to prevent plastic shrinkage cracking. After a period of one day, specimens were demolded and cured in water tank for 28 and 90 days.

Table 4. Mix proportions for SM and WM

(kg/m^3)	SM	WM	
Cement	854	378	
Limestone powder	854	757	
Fly ash	0	378	
Water	380	399	
Super plasticizer	16,8	12	
HTPP fiber	18	18	

Flexural tests were conducted with the four point bending test machine which had 6 kN capacity load cell. Test machine was at deformation control mode and rate was 0.5 mm per min and span length was 260 mm. Load-deflection curves were plotted by the test values. The very first breaking point of linearity at curves are taken into account as first crack strengths. Maximum flexural strength is calculated with the maximum point on curves and deflection value corresponding to that point also showed the deflection capacity of that sample. First crack and flexural strengths are calculated with PL/bh² formula, here L is span length, b is cross section width, h is cross section height and P is first crack load for first crack strength or maximum load for flexural strength. Toughness values are computed by the area under the curve, which was between the first crack load and maximum load points. Crack number analyses are also conducted on samples after the flexural tests with hand-type optical microscope.

3. MECHANICAL PERFORMANCES OF THE COMPOSITES

3.1 Discussion of Load-Deflection Curves

Load-deflection curves of SM and WM are shown in Figure 2 and 3, respectively. It was clear that the load carrying capacity of SM was better than WM both in short and long terms. Also aging enhanced mechanical properties of composites incorporating both matrices. Flexural performance enhancement was more apparent at WM. The possible reason is the late pozzolanic reaction process of fly ash with hydrated lime from cement, which contributes to the interfacial bonding between cement paste and polymeric fiber.

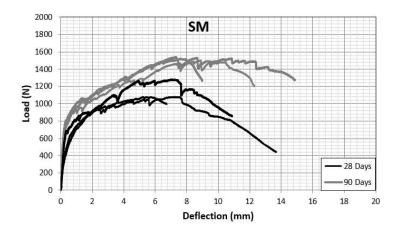


Figure 2. Load-deflection curves of SM

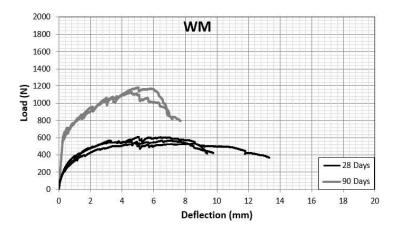


Figure 3. Load-deflection curves of WM

3.2. Discussion of First Crack and Flexural Strengths

The first crack and flexural strength values, which were obtained from load-deflection curves, are presented in Figure 4. Although the first crack strength of WM was lower than SM on 28 days, there were slightly no difference at long term. The flexural strength values were higher at both short and long terms for each series. The positive effect of curing was more obvious in WM than SM. When 90 days and 28 days of flexural performances were compared, there were 90% and 33% increase at first crack and flexural strengths of SM, respectively. This increment was 327% and 99% for first crack and flexural strengths of WM series. This result confirmed that bonding between fiber and matrix can be significantly improved at later ages if fly ash is used.

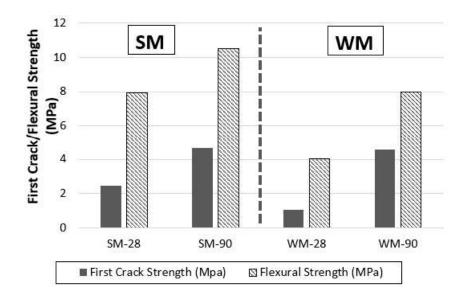


Figure 4. First crack and flexural strength values

3.3. Discussion of Toughness and Deflection Capacity

The toughness-deflection capacity and crack number-deflection capacity values of composites are shown in Figure 5 and 6, respectively. It was seen that both toughness and deflection capacity values were increased thorough the time (Figure 5). The toughness values of SM were 6160 and 9369 N.mm, on 28 and 90 days, respectively. These values were 1901 and 4424 N.mm for WM. The improvement of toughness and deflection capacity were more distinct for WM. Those changes in toughness and deflection capacity of WM thorough aging were 133% and 10% whereas they were 57% and 22% for SM, respectively.

Increased crack number value let the SM deform more easily and thus deflection capacity was also increased thorough the time. For ECC design, a brittle matrix is favorable to initiate cracking. From this point SM is more brittle at later ages and more suitable for multiple cracking compared to WM. Highest crack number values were obtained from SM at 90 days.

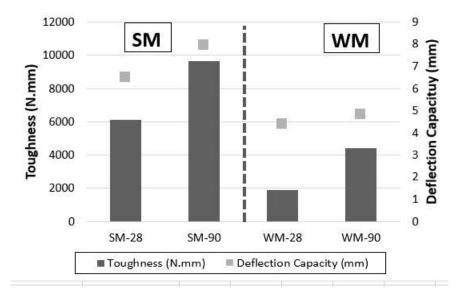


Figure 5. Toughness and deflection capacity values

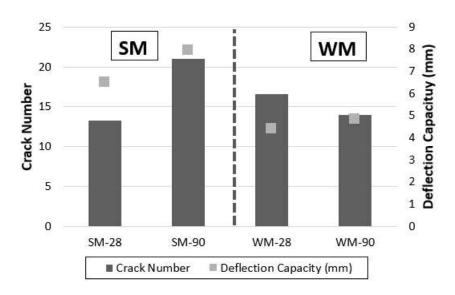


Figure 6. Crack number and deflection capacity values

4. CONCLUSION

The results of this experimental study showed a strong matrix (SM) which is more brittle at later ages compared to weak matrix (WM) is more appropriate for HTPP-ECC design with improved flexural performance. Multiple cracking performance of SM is also improved at 90 days.

Aging has a significant impact on composites flexural performance if fly ash is employed in mix design. The possible reason is the late pozzolanic reaction process of fly ash with hydrated lime from cement, which contributes to the interfacial bonding between cement paste and polymeric fiber. Except the deflection capacity, the improvement

percentage increment of all mechanical properties (first crack strength, flexural strength and toughness) of WM composites were higher than composites with SM. As a suggestion, longer testing periods up to one year can be performed in order to observe if the flexural performance of fly ash incorporated matrix is further improved or not.

REFERENCES

- Daniel, J. I., & Shah, S. P. (1994). Fiber reinforced concrete: developments and innovations. American Concrete Institute.
- Felekoglu, B., Tosun-Felekoglu, K., Ranade, R., Zhang, Q., & Li, V. C. (2014). Influence of matrix flowability, fiber mixing procedure, and curing conditions on the mechanical performance of HTPP-ECC. Composites Part B: Engineering, 60, 359-370.
- Gödek, E., Felekoğlu, K. T., Keskinateş, M., & Felekoğlu, B. (2017). Development of flaw tolerant fiber reinforced cementitious composites with calcined kaolin. Applied Clay Science, 146, 423-431.
- Keskinateş, M., & Felekoğlu, B. (2018). The influence of mineral additive type and water/binder ratio on matrix phase rheology and multiple cracking potential of HTPP-ECC. Construction and Building Materials, 173, 508-519.
- Li V. C. (1998) Engineered Cementitious Composites (ECC) tailored composites through micromechanical modeling, Fibre reinforced concrete: Present and the future. In: Banthia N, Mufti A, (eds.), Canadian Society of Civil Engineers, (64–97).
- Li, V. C. & Kanda, T. (1998). Innovations Forum: Engineered cementitious composites for structural applications. Journal of Mat. in Civil Eng., 10 (2), 66-69.
- Li, V. C. (2003). On engineered cementitious composites (ECC). Journal of advanced concrete technology, 1(3), 215-230.
- Li, V. C., Fukuyama, H., & Mikame, A. (1998). Development of Ductile Engineered Cementitious Composite Elements for Seismic Structural Applications.
- Li, V. C., Mishra, D. K., & Wu, H. C. (1995). Matrix design for pseudo-strain-hardening fibre reinforced cementitious composites. Materials and Structures, 28(10), 586-595.
- Lin, Y. W., Wotherspoon, L., & Ingham, J. M. (2014). Tensile properties of an engineered cementitious composite shotcrete mix. Journal of Materials in Civil Engineering, 27(7), 04014205.
- Maalej, M. & Li, V. C. (1994). Flexural/tensile-strength ratio in engineered cementitious composites. Journal of Materials in Civil Engineering, 6 (4), 513-528.
- Redon, C., Li, V. C., Wu, C., Hoshiro, H., Saito, T., & Ogawa, A. (2001). Measuring and modifying interface properties of PVA fibers in ECC matrix. Journal of Materials in Civil Engineering, 13(6), 399-406.
- Tosun-Felekoğlu, K., Gödek, E., Keskinateş, M., & Felekoğlu, B. (2017). Utilization and selection of proper fly ash in cost effective green HTPP-ECC design. Journal of Cleaner Production, 149, 557-568.

Wang, S., & Li, V. C. (2007). Engineered cementitious composites with high-volume fly ash. ACI Materials journal, 104(3), 233.

Yang, E. H. (2008). Designing Added Functions in Engineered Cementitious Composites.