Fonksiyonlar ve Yüzeyler

İki Değișkenli Fonksiyonlar

Dairesel silindirin V hacmi, r yarıçapına ve h yüksekliğine bağlıdır. Aslında, $V=\pi r^{2} h$ olduğunu biliyoruz. V ye r ve h nin fonksiyonu deriz ve $V(r, h)=\pi r^{2} h$ yazarız.
Tanım 1
İki değișkenli f fonksiyonu, D kümesinden her bir sıralı (x, y) gerçel sayı ikilisine, $f(x, y)$ ile gösterilen tek bir gerçel sayı karșılık getiren kuraldır. D, f nin tanım kümesidir ve f nin aldığı değerlerin $\{f(x, y) \mid(x, y) \in D\}$ kümesine de görüntü kümesi denir.
f nin genel bir (x, y) noktasında aldığı değeri sıklıkla $z=f(x, y)$ ile gösteririz. x ve y bağımsız değișkenler, z ise bağımlı değișkendir.

Tanım kümesi, \mathbb{R}^{2} nin, $x y$-düzleminin, bir alt kümesidir.
Tanım kümesini mümkün olan tüm girdilerin kümesi, görüntü kümesini de çıktıların kümesi olarak düşünebiliriz.

Fonksiyon, tanım kümesi belirtilmeden, bir formül ile verildiğinde tanım kümesi olarak, verilen ifadenin iyi tanımlı gerçel sayı değerleri ürettiği tüm (x, y) ikililerinin kümesi alınır.

Örnek 2

$f(x, y)=4 x^{2}+y^{2}$ ifadesiyle verilen $f(x, y)$ fonksiyonu tüm (x, y) sıralı gerçel sayı ikilileri için tanımlı olduğundan tanım kümesi \mathbb{R}^{2}, tüm $x y$-düzlemidir.

Görüntü kümesi ise tüm negatif olmayan gerçel sayılar, $[0, \infty)$ dur. [$x^{2} \geq 0$ ve $y^{2} \geq 0$ olduğundan tüm x ve y ler için $f(x, y) \geq 0$ olduğuna dikkat ediniz.]

Örnek 3

Așağıdaki fonksiyonların tanım kümelerini ve $f(3,2)$ yi bulunuz.
(a) $f(x, y)=\frac{\sqrt{x+y+1}}{x-1}$
(b) $f(x, y)=x \ln \left(y^{2}-x\right)$

Çözüm.
(a) f için verilen ifade, paydanın 0 olmadığı ve karekökün içindeki terimin negatif olmadığı durumda anlamlıdır. Bu yüzden tanım kümesi

$$
D=\{(x, y) \mid x+y+1 \geq 0, x \neq 1\} \operatorname{dir} .
$$

$x+y+1 \geq 0$ ya da $y \geq-x-1$ eșitsizliği $y=-x-1$ doğrusunun üzerinde ya da üstündeki noktaları verir. $x \neq 1$ ise $x=1$ doğrusunun üzerindeki noktaların alımaması gerektiğini söyler.

Çözüm (devamı).

$$
f(3,2)=\frac{\sqrt{3+2+1}}{3-1}=\frac{\sqrt{6}}{2}
$$

$$
\ln \left(y^{2}-x\right) \text { yalnızca } y^{2}-x>0, \text { ya da } x<y^{2}
$$

 iken tanımlı olduğu için, tanım kümesi
dir. $\mathrm{Bu}, x=y^{2}$ parabolünün solundaki noktaların kümesidir.
$f(3,2)=3 \ln \left(2^{2}-3\right)=\begin{gathered}\text { taların } \text { küm } \\ 3 \\ \ln 1=0\end{gathered}$

Örnek 4
$g(x, y)=\sqrt{9-x^{2}-y^{2}}$ fonksiyonunun tanım ve görüntü kümesini bulunuz.

Çözüm.

g nin tanım kümesi

$$
\begin{aligned}
D & =\left\{(x, y) \mid 9-x^{2}-y^{2} \geq 0\right\} \\
& =\left\{(x, y) \mid x^{2}+y^{2} \leq 9\right\}
\end{aligned}
$$

merkezi $(0,0)$ ve yarıçapı 3 olan dairedir.

Çözüm (devamı).
g nin görüntüsü

$$
\left\{z \mid z=\sqrt{9-x^{2}-y^{2}},(x, y) \in D\right\}
$$

dir. z pozitif karekök olduğundan $z \geq 0$ olur. Ayrıca

$$
9-x^{2}-y^{2} \geq 0 \Rightarrow \sqrt{9-x^{2}-y^{2}} \leq 3
$$

dür. Buradan görüntü kümesi

$$
\{z \mid 0 \leq z \leq 3\}=[0,3]
$$

olarak bulunur.

Görsel Temsiller

İki değișkenli bir fonksiyonu görselleștirmenin bir yolu da onun grafiğidir. f nin grafiği, denklemi $z=f(x, y)$ olan yüzeydir. Fonksiyonları görselleștirmenin diğer bir yolu da haritacılardan ödünç alınan aynı yükseklikteki noktaların birleștirilmesiyle elde edilen kesit (ya da kontur) eğrileridir.

Tanım 5

İki değișkenli bir f fonksiyonunun kesit eğrileri, k (f nin görüntü kümesinde) bir sabit olmak üzere denklemi $f(x, y)=k$ olan eğrilerdir.

Bir $f(x, y)=k$ kesit eğrisi, f nin tanım kümesinde, f nin, verilen bir k değerini aldığı noktaların kümesidir. Diğer bir deyișle, f nin grafiğinin yüksekliğinin nerede k olduğunu gösterir.

Așağıdaki șekilde kesit eğrileri ile yatay izler arasındaki ilișkiyi görebilirsiniz. $f(x, y)=k$ kesit eğrileri, f nin grafiğinin $z=k$ yatay düzlemi ile arakesitinin $x y$-düzlemine izdüșümleridir. Bu yüzden, eğer bir fonksiyonun kesit eğrilerini çizer ve onları yüzey üzerinde belirtilen düzeye yükseltirseniz zihninizde grafiği olușturabilirsiniz. Kesit eğrilerinin birbirine yakın olduğu yerlerde yüzey dikleșmekte, uzak olduğunda ise düzleșmektedir.

Örnek 6

$$
g(x, y)=\sqrt{9-x^{2}-y^{2}}=k
$$

fonksiyonunun $k=0,1,2,3$ değerleri için kesit eğrilerini çiziniz.

Çözüm.

Kesit eğrileri

$$
\sqrt{9-x^{2}-y^{2}}=k \quad \text { ya da } \quad x^{2}+y^{2}=9-k^{2}
$$

eğrileridir. Bunlar, merkezi $(0,0)$ yarıçapı $\sqrt{9-k^{2}}$. olan eșmerkezli çemberlerdir. Bu eğriler $k=0,1,2,3$ için așağıdaki șekilde gösterilmiștir. Bu kesit eğrilerinin yükseltilerek bir yüzey olușturduğunu görselleștirmeye çalıșınız ve bunu g nin grafiği (bir yarıküre) ile karșılaștırınız.

Çözüm (devamı).

$$
g(x, y)=\sqrt{9-x^{2}-y^{2}}=k
$$

fonksiyonunun kontur haritası ve grafiği așağıdaki șekildedir.

Üç veya Daha Fazla Değișkenli Fonksiyonlar

Üç değişkenli bir f fonksiyonu, bir $D \subset \mathbb{R}^{3}$ tanım kümesindeki her (x, y, z) sıralı üçüsüne, $f(x, y, z)$ ile gösterilen tek bir gerçel sayı getiren bir kuraldir.

Örneğin, dünya'nın bir noktasındaki T sıcaklı̆̆ı, bu noktanın x boylamına y enlemine ve t zamanına bağldır, bu nedenle $T=f(x, y, t)$ yazabiliriz

Ornek 7

$$
f(x, y, z)=\ln (z-y)+x y \sin z
$$

fonksiyonunun tanım kümesini bulunuz.
Çözüm.
$f(x, y, z)$ nin ifadesi $z-y>0$ olduğunda tanımlıdır, bu nedenle f nin tanım kümesi

$$
D=\left\{(x, y, z) \in \mathbb{R}^{3} \mid z>y\right\}
$$

olur. Bu küme $z=y$ düzleminin yukarısında kalan tüm noktalardan olușan yarı uzaydır.

Dört boyutlu bir uzayda bulunması nedeniyle üç değișkenli bir f fonksiyonunu grafiğiyle görselleștirmek çok zordur.

Yine de, kesit yüzeyleri adı verilen $f(x, y, z)=k$ denklemine sahip yüzeyleri inceleyerek f hakkında biraz bilgi edinebiliriz. $\operatorname{Bir}(x, y, z)$ noktası bir kesit yüzeyi üzerinde hareket ederse $f(x, y, z)$ nin değeri aynı kalır.

Örnek 8

$$
f(x, y, z)=x^{2}+y^{2}+z^{2}
$$

fonksiyonunun kesit yüzeylerini bulunuz.

Çözüm.

Kesit yüzeyleri, $k \geq 0$ olmak üzere $x^{2}+y^{2}+z^{2}=k$ yüzeyleridir. Bunlar, yarıçapı \sqrt{k} olan eșmerkezli küreler oluștururlar. Bu nedenle, (x, y, z), O merkezli bir küte üzerinde hareket ederken, $f(x, y, z)$ nin değeri aynı kalı.

Grafikler

Tanım 9

Tanım kümesi D olan iki değișkenli bir f fonksiyonunun grafiği, D deki (x, y) ler için $z=f(x, y)$ koșulunu sağlayan \mathbb{R}^{3} teki (x, y, z) noktalarının kümesidir.

Bir değişkenli f fonksiyonunun grafiği $y=f(x)$ denklemi ile verilen C eğrisi olduğu gibi, iki değişkenli f fonksiyonunun grafiği de $z=f(x, y)$ denklemiyle verilen S yüzeyidir.
f nin S grafiğini $x y$-düzlemindeki D tanım kümesinin tam üstünde ya da altında görebiliriz.

Örnek 10

$f(x, y)=6-3 x-2 y$ fonksiyonunun grafiğini çiziniz.

Çözüm.

f nin grafiği $z=6-3 x-2 y$ ya da $3 x+2 y+z=6$ denklemi ile verilir be bu bir düzlemi temsil eder. Kesenleri bularak grafiğin birinci bölgede kalan kısmını aşağıdaki șekilde çizebiliriz.

Önceki Örnekteki fonksiyon

$$
f(x, y)=a x+b y+c
$$

biçiminde olan ve doğrusal fonksiyon adı verilen fonksiyonların özel bir durumudur.

Bu fonksiyonların grafikleri $z=a x+b y+c$ ya da $a x+b y-z+c=0$ ile verildikleri için birer düzlemdir.

Örnek 11

$f(x, y)=x^{2}$ fonksiyonunun grafiğini çiziniz.

Çözüm.

y ye hangi değeri verirsek verelim $f(x, y)$ nin değerinin x^{2} olduğuna dikkat ediniz. Grafiği veren $z=x^{2}$ denklemi y yi içermemektedir. Bu, denklemi $y=k$ olan her düșey ($x z$-düzlemine paralel) düzlemin, grafiği, $z=x^{2}$ denklemi ile verilen parabol boyunca kesmesi demektir. Sekilde grafiğin $x z$-düzleminde alınan
 $z=x^{2}$ parabolünün y-ekseni boyunca kaydırilarak olușturulması gösterilmektedir.
Dolayısıyla; grafik, parabolik silindir adı verilen ve aynı parabolün sonsuz tane kaydırılmıs kopyasından olușan bir yüzeydir.

Kesitlerin (dilimlerin) șekillerini belirleyerek bașlamak genelde iki değişkenli fonksiyonların grafiğini çizmeyi kolaylaștırır.

Örneğin, x i, $x=k$ (bir sabit) olarak sabitlersek ve y yi değiștirirsek sonuç tek değișkenli $z=f(x, y)$ fonksiyonudur ve grafiği $z=f(x, y)$ denklemi ile verilen yüzeyin $x=k$ düșey düzlemi ile kesișimidir.

Benzer șekilde, yüzeyi $y=k$ düșey düzlemiyle dilimleyip $z=f(x, k)$ eğrilerine bakabilir ya da $z=k$ yatay düzlemleri ile dilimleyebiliriz. Tüm bu eğrilere $z=f(x, y)$ yüzeyinin izleri (ya da kesitleri) denir.

Örnek 12

İzleri kullanarak $f(x, y)=4 x^{2}+y^{2}$ fonksiyonunun grafiğini çiziniz.

Çözüm.

Grafiğin denklemi $z=4 x^{2}+y^{2}$ dir. $x=0$ alırsak $z=y^{2}$ çıkar. Dolayısıyla $y z$-düzleminin, grafikle kesișimi bir paraboldür. $x=k$ (bir sabit) alırsak $z=4 k^{2}+y^{2}$ çıkar. Bu, grafiği $y z$-düzlemine paralel düzlemlerle kestiğimizde yukarıya doğru açılan paraboller elde edeceğimiz anlamına gelir. Benzer șekilde, $y=k$ alırsak $z=4 x^{2}+k^{2}$ izleri yukarıya doğru açllan parabollerdir. $z=k$ alırsak bir elips ailesi olan $4 x^{2}+y^{2}=k$ yatay izleri elde ederiz.

İzlerin șekillerini belirledikten sonra Șekildeki gibi grafiği çizebiliriz. Eliptik ve parabolik izlerden dolayı $z=4 x^{2}+y^{2}$ yüzeyine eliptik paraboloid adı verilir.

İkinci Dereceden Yüzeyler

Tanım 13
x, y ve z değișkenleri cinsinden ikinci dereceden olan denklemlerin grafiklerine ikinci dereceden yüzey denir.

Örnek 14
$x^{2}+\frac{y^{2}}{9}+\frac{z^{2}}{4}=1$ denklemi ile verilen ikinci dereceden yüzeyi çiziniz.
Çözüm.
$x y$-düzlemindeki $(z=0)$ izi, $x^{2}+\frac{y^{2}}{9}=1$ denklemi ile verilen elipstir. Genelde, $z=k$ düzlemindeki yatay izler

$$
x^{2}+\frac{y^{2}}{9}=1-\frac{k^{2}}{4}, \quad z=k
$$

denklemi ile verilir. Bu izler, $k^{2}<4$ ya da $-2<k<2$ için elipstir.

Çözüm (devamı).

Benzer șekilde,

$$
\begin{aligned}
& x=k,(-1<k<1) \Longrightarrow \frac{y^{2}}{9}+\frac{z^{2}}{4}=1-k^{2} \\
& y=k,(-3<k<3) \Longrightarrow x^{2}+\frac{z^{2}}{4}=1-\frac{k^{2}}{9}
\end{aligned}
$$

düșey izleri hep elipstir.

Şekil, çizilmiș birkaç izin yüzeyin șeklini nasıl belirttiğini göstermektedir. Tüm izleri elips olduğu için bu yüzeye elipsoid denir. Yüzeyin koordinat düzlemlerinin her birine göre simetrik olduğuna dikkat ediniz. Bu, denklemin x, y ve z nin yalnızca çift kuvvetlerinden olușmasının bir sonucudur.

Çözüm (devamı).
Örnekteki elipsoid, (z-ekseni gibi) bazı düşey doğruların onu birden fazla kez kestiğinden dolayı, bir fonksiyonun grafiği değildir. Ancak, șeklin üst ya da alt yarısı bir fonksiyonun grafiğidir. Elipsoidin denklemini z için çözersek

$$
z^{2}=4\left(1-x^{2}-\frac{y^{2}}{9}\right) \quad z= \pm 2 \sqrt{1-x^{2}-\frac{y^{2}}{9}}
$$

elde ederiz.

Çözüm (devamı).
Bu yüzden

$$
f(x, y)=2 \sqrt{1-x^{2}-\frac{y^{2}}{9}} \text { ve } g(x, y)=-2 \sqrt{1-x^{2}-\frac{y^{2}}{9}}
$$

fonksiyonlarının grafikleri elipsoidin üst ve alt yarısıdır.
$\overbrace{2}^{z^{z}} f(x, y)=2 \sqrt{1-x^{2}-\frac{1}{9} y^{2}}$

Çözüm (devamı).
f ve g nin ikisinin de tanım kümeleri

$$
1-x^{2}-\frac{y^{2}}{9} \geq 0 \quad \Longrightarrow \quad x^{2}+\frac{y^{2}}{9} \leq 1
$$

eșitsizliğini sağlayan tüm (x, y) noktalarından olușur. Bașka bir deyișle,

$$
x^{2}+\frac{y^{2}}{9}=1
$$

elipsinin üzerinde veya içinde olan tüm noktalardan olușur.

Bazı Standart İkinci Dereceden Yüzeyler

Standart biçimdeki altı temel ikinci dereceden yüzeyin bilgisayar tarafından çizilmiș grafiklerini görelim.

Tüm bu yüzeyler z-eksenine göre simetriktir.
Bir ikinci dereceden yüzey diğer bir eksene göre simetrik ise denklemi de ona uygun olarak değișir.

Elipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

Tüm kesitler elipsdir.
Eğer $a=b=c$ ise elipsoid bir küredir.

Koni

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z^{2}}{c^{2}}
$$

Yatay kesitler elipstir. Düșey kesitler $x=k$ ve $y=k(k \neq$ $0)$ hiperboldür.
$k=0$ için ikișer adet doğrudur.

Eliptik Paraboloid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$

Yatay kesitler elipsdir. Düșey kesitler paraboldür.

Tek Parçalı Hiperboloid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}-\frac{z^{2}}{c^{2}}=1
$$

Yatay kesitler elipsdir. Düșey kesitler hiperboldür.

Hiperbolik Paraboloid

$$
\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=\frac{z}{c}
$$

Yatay kesitler hiperboldür. Düșey kesitler paraboldür.

İki Parçalı Hiperboloid

$$
-\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1
$$

$k<-c$ veya $k>c$ için yatay kesitler ($z=k$) elipstir.
Düșey kesitler hiperboldür

Örnek 15
$x^{2}+2 z^{2}-6 x-y+10=0$ ikinci dereceden yüzeyini sınıflandırınız.
Çözüm.
Verilen denklemi kareye tamamlayarak yeniden yazarsak

$$
y-1=(x-3)^{2}+2 z^{2}
$$

elde ederiz. Bu denklemin bir eliptik paraboloid olduğunu görürüz. Ancak, paraboloidin ekseni y-eksenine paraleldir ve grafik, köșesi $(3,1,0)$ noktasında olacak șekilde kaydırılmıștır. $y=k,(k>1)$ düzlemindeki izler

$$
(x-3)^{2}+2 z^{2}=k-1, \quad y=k
$$

elipsleridir. $x y$-düzlemindeki iz ise $y=1+(x-3)^{2}, z=0$ denklemleri ile verilen paraboldür.

Çözüm (devamı).

